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ABSTRACT
PROCESSING - STRUCTURE - PROPERTIES RELATIONS IN TITANIUM
CARBIDE - TITANIUM BORIDE COMPOSITES FABRICATED BY TRANSIENT
PLASTIC PHASE PROCESSING
DMITRI BRODKIN
MICHEL BARSOUM

A systematic study of processing-structure-properties relations was carried out for a
class of titanium carbide-titanium boride composites produced by Transient Plastic Phase
Processing (TPPP), novel processing technique capable of in situ net-shape manufacturing
fully dense refractory ceramic composites at relatively low homologous temperatures.
These fully dense TiCx-TiB-Ti3B4 composites were fabricated starting from Ti/B4C,
TiC, s/TiB,, Ti/C/TiBz and TiCg 5/B4C mixtures of different molar ratios with the

resulting different morphologies of the final phases.

The starting composition was found to determine the final microstructure and
properties. However, provided the starting composition and the temperature schedule were
maintained the same, the mode of deformation (HIP-ing vs hot-pressing or forging) and
particle size of the starting powder mixture were found to be the critical factors determining
the nominal pressure required to achieve full density in the produced composites, and
extent of homogeneity and morphological texture in their final microstructure. Plastic flow
of TiCg_.s5 combined with particle rearrangement and comminution of porous reaction
product are believed to be the predominant mechanisms for the most part of densification

process responsible for increase of relative density to ~95%.
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Reaction paths and microstructural evolution in the two starting compositions with
4:4:1 ratio of Ti:B:C, namely: 4:1 Ti/B4C and 1:1 TiC, s/TiB,, were examined in detail. In
the former, the Ti;B, phase nucleated and grew as platelets, whereas it exhibited roughly
equiaxed morphology in the latter. The presence of TiB as an intermediate phase in
“platelet” composition appeared to determine the morphology of the Ti3B4 phase. Based on
XRD and SEM results from interrupted runs, a model is proposed according to which the
faster diffusion of C, relative to B, is instrumental in the microstructural evolution of the
“platelet” composite. Consistent with the model is the observation that the reduction of the
initial particle size of the Ti in the “platelet” composition resulted in a more homogenous
microstructure. The microstructural evolution of the "equiaxed" composite is less
complicated in that there are no intermediate phases. The resultant microstructure is

believed to develop by a displacive reaction that only involves the diffusion of B and C.

The flexural strength in the temperature range 25°C-1400°C, plane strain fracture
toughness in the temperature range 25°C-1000°C, room temperature hardness and
microhardnesses of individual phases, thermal shock susceptibility, wear resistance, and
oxidation resistance in the temperature range 750°C-1000°C were measured for a variety of
fully dense titanium carbide-titanium boride composites with different microstructures. The
TizBg4 platelets are responsible for a 30% increase in fracture toughness when compared
with the equiaxed composites. This toughening increment is largely attributed to the
increased efficiency of crack deflection by TizB4 platelets compared to the equiaxed Ti3B4
grains. The Kjc value of ~6 MPa measured for the platelet composites is consistent with the
fact that only crack deflection was observed in these composites and that there were very
few indications of crack bridging and platelet pull-out. TiB3 is the strength governing phase
at ambient temperatures due to residual stresses induced by its thermal expansion

anisotropy. At high temperatures, however, these residual stresses are relieved and the
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presence of borides results in significant strengthening. TPPP composites exhibited
adequate oxidation resistance up to 1000°C. Their relatively high thermal shock resistance
and strength, and their competitive wear behavior combined with economic processing

requirements make this class of materials an excellent candidates for cutting tools.
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1. INTRODUCTION

Ceramic materials are primary candidates for numerous critical applications due to
their extreme hardness, excellent wear resistance and chemical stability, along with high
modulus and specific strength. Ceramic components could be used at temperatures or in
environments beyond the reach of their metal or intermetallic counterparts. However, the
inherent disadvantage of the monolithic (single phase) ceramics, their brittleness and hence

tendency to catastrophic failure limits their applications as engineering material.

Within the last two decades, a number of approaches to improve fracture toughness
of ceramics have been developed. These approaches have yielded high-performance
ceramic materials with fracture toughness values as high as 10 to 20 MPavm (Table ).
Among them, a term "ceramic-ceramic matrix composite" (CMC) is commonly applied to
fiber or whisker reinforced ceramics as well as multiphase ceramics in which one of the
phases serves as reinforcement. In the latter case this signifies the fact that different
microstructural constituents interact with each other and the propagating crack providing
additional crack energy dissipation mechanisms and thus increasing fracture toughness.
Therefore, the distinction between multiphase ceramics and CMCs is in the synergy of
combining different microstructural constituents that is achieved in composites and results
in a multiphase ceramic material exhibiting better combination of mechanical properties
compared to parent single phase ceramics. The search for this synergy is the major goal in

the development of CMCs and other high-performance ceramic materials.
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Novel concepts for fabrication of high-performance ceramic materials have also
been developed in the recent years. Among them in situ methods have generated
considerable interest. However, in situ methods often lose the competition to conventional
techniques or techniques which are less innovative from a material point of view but can be
used in conjunction with state-of-the-art manufacturing practices such as superplastic
forming, 3-D printing etc. This in no way can be attributed to insufficient cost-efficiency or
flexibility of in situ methods, but rather to the lack of understanding of in situ processes. In
situ techniques, with only few exceptions, are not optimized to the extent, sufficient to
make them attractive for end users, and, therefore, only few of them have found practical
applications. Successful exceptions are the family of self-reinforced silicon nitrides [1-4]
and Lanxide DIMOX™ platelet-reinforced composites [5-7]. Introduction and patenting of
these materials in 1989-90, clearly showed that the optimization of these and other
innovative techniques could be realized only through better understanding of processing-

structure-properties relations which has not been achieved yet for many of them.

Recently, a novel processing technique called Transient Plastic Phase Processing
(TPPP) was developed by Barsoum and co-workers [8, 9] for net shape processing certain
classes of fully dense ceramic-ceramic composites. TPPP is a form of reactive hot-pressing
thatis generically related to such innovative approaches as Transient Viscous Sintering of
Sacks et al. [10, 11] and solid state displacement reaction synthesis of Henager et al. [12-
14]. This technique offers several advantages over other currently used techniques, which
include lower processing temperatures, elimination of sintering aids, and feasibility of
producing a variety of microstructures and compositions some of which are new and as yet
unexplored in literature. TPPP has been successfully employed by Barsoum and co-
workers [8, 15] to produce fully dense ceramic-ceramic composites in the Ti-B-C system,

among others [16].
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The initial work of Barsoum and Houng [8] has demonstrated the feasibility and
some of the advantages of TPPP in the Ti-B-C system. In that study, two starting
compositions, 3:1 Ti/B4C and 4:1 Ti/B4C (molar ratios), were investigated. It was
observed that only the latter composition yielded a near fully dense composites. This was
explained by the experimental observations that indicated the formation of intermediate
compounds during the initial densification step in the 4:1 Ti/B4C starting composition.
These intermediate compounds were identified as TiCy_s and TiB5. It was noted that since
an intermediate "soft" TiCp s did not form in the 3:1 Ti/B4C starting composition, the
produced composite had significant residual porosity. Some of the interesting features
reported by Barsoum and Houng [8] included net shape capability and the development of
TizB, in platelet morphology.

Ti-B-C system appeared to be a rewarding object for both, in-depth study of
processing-structure-properties relations and optimization of TPPP for the following
reasons:

(i) Titanium carbide-titanium boride composites hold great promise for applications as
high-temperature structural components in heat exchangers and engines, as wear-resistant
elements in cutting tools and forming dies, as well as many other non-structural
applications. It has been shown that multiphase composites containing these compounds
exhibit strong synergistic effects resulting in remarkable overall mechanical properties [17-

22].

(ii) In TiC-TiB3 system TPPP has proven to be the only viable alternative to conventional
processing techniques capable of producing fully dense, ultra-refractory TiCx-TiB2 or
TiCx-TiB2-Ti3B4 composites at temperatures that are only about 0.62 of the eutectic

temperature.
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