X-ray high-pressure study of Ti$_2$AlN and Ti$_2$AlC

Bouchaib Manouna,b,*, F.X. Zhanga, S.K. Saxenaa, T. El-Raghyc, M.W. Barsoumd

aCenter for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-140, University Park, Miami, FL 33199, USA
bLaboratoire d’Analyses, d’Essais et d’Environnement (LAEE), Département de Chimie, Faculté des Sciences “Dhar Mehraz”, Université Sidi Mohamed Ben Abdellah, 30000 Fès, Morocco
c3-ONE-2, Voorhees, New Jersey, USA
dDepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA

Abstract

The lattice parameters of Ti$_2$AlN and Ti$_2$AlC powders were measured as a function of pressure up to \approx 50 GPa, using a synchrotron radiation source and a diamond anvil cell. No phase transformations were observed. As for most related layered carbides and nitrides, such as Ti$_4$AlN$_3$ and Ti$_3$SiC$_2$, the compressibilities of Ti$_2$AlN and Ti$_2$AlC along the c-axes are larger than those along the a-axes. The bulk modulus of Ti$_2$AlC at 186 \pm 2 GPa, is \approx 10% higher than that of Ti$_2$AlN at 169 \pm 3 GPa.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: C. High pressure; C. X-ray diffraction

1. Introduction

By now it is fairly well established that the layered, hexagonal ternary carbides and nitrides with the general formula M$_{n+1}$AX$_n$ (MAX)—where $n = 1-3$, M is an early transition metal, A is an A-group (mostly IIIA and IVA) element and X is either C and/or N—combine some of the best attributes of metals and ceramics. Like metals, they are electrically and thermally conductive, not susceptible to thermal shock, plastic at high temperatures and exceptionally damage tolerant, and most readily machinable (manual hack saw will suffice). Like ceramics, they are elastically rigid, lightweight, creep and fatigue resistant and maintain their strengths to high temperatures [1–7]. More recently Barsoum et al. have shown that the MAX phases are but a subset of much larger family of solids they termed kinking nonlinear elastic. These solids are characterized by a large c/a ratio (greater than about 1.5), which consequently ensures that the only deformation mode available is the formation of fully reversible, dislocation-based kink bands, KBs [8–10].

There are over 50 M$_2$AX or 2 1 1 phases [11]; three M$_3$AX$_2$ or 3 1 2, and two M$_4$AX$_3$ or 4 1 3. Of special interest to this work are Ti$_2$AlC and Ti$_2$AlN. These phases were first synthesized in powder form by Jeitchko and Nowotny in the early 1960s [12,13]. More recently, Barsoum et al. reported on the fabrication and characterization of predominantly single-phase samples as well as the mid-range composition, Ti$_2$AlC$_{0.5}$N$_{0.5}$ [14]. Like other MAX phases, all samples were readily machinable and excellent thermal and electric conductors. In the 25–1300°C temperature range, the thermal expansion coefficient of Ti$_2$AlN (8.8 \times 10$^{-6}$ °C$^{-1}$) and Ti$_2$AlC (8.2 \times 10$^{-6}$ °C$^{-1}$) are quite similar.

In this paper, we will report on the compressibilities of Ti$_2$AlN and Ti$_2$AlC and compare the results with Ti$_4$AlN$_3$. We also explore the stability of these phases to pressures as high as 54 GPa.

2. Experimental details

Fully dense, predominantly single-phase samples of Ti$_2$AlN and Ti$_2$AlC (3-ONE-2, Voorhees, NJ) were fabricated by pressureless sintering of pre-reacted Ti$_2$AlC...
and Ti$_2$AlN powders in argon. The powders were commercially available (3-ONE-2, Voorhees, NJ).

Powdered samples were pressurized using a gasketed Diamond Anvil Cell (DAC) with 300–400 µm culets. A 250 µm initial thickness rhenium gasket was indented to about 50 µm. Since high-purity Al does not undergo structural phase transition at high pressure, has a low shear strength, it was the pressure-transmitting medium of choice [15–20]. Since its pressure–volume relation is well established, it also acted as a pressure marker [21]. Powdered samples were placed between two pieces of Al foil (~15 µm thickness) and packed in the 100–125 µm diameter hole.

X-ray diffraction measurements for Ti$_2$AlC were conducted at room temperature using an angle-dispersive synchrotron radiation at the High Pressure Collaborative Access Team (HPCAT) beam line at the Advanced Photon Source (Argonne National Laboratory). A monochromatic beam, with a wavelength, $\lambda = 0.3678$ Å, was focused to a 10 µm spot size on the sample. For Ti$_2$AlN, the X-ray beam, with $\lambda = 0.496$ Å, was focused down to a 35 µm spot size. The spectra were collected at CHESS (Cornell University, Ithaca, NY). An image plate collected the X-ray diffraction patterns. Diffraction rings were recorded between 2θ = 1° and 35°. The FIT2D program [22,23] was employed to convert the image plate records into 2θs and intensities.

3. Results and discussion

The X-ray powder diffraction patterns for Ti$_2$AlN and Ti$_2$AlC are shown in Fig. 1. Apart from a few minor impurity peaks, all major peaks are assigned to the hexagonal structure with the space group P6$_3$/mmc. The cell parameters were determined using least-squares refinement on individually fitted peaks. The a and c parameters of Ti$_2$AlC were 3.06 and 13.71 Å, respectively; those for Ti$_2$AlN were 2.986 and 13.60 Å. In both cases, the measured cell parameters reported herein lie at the extrema of those, measured previously (Table 1) [11,14,24–27].

A summary of the relative changes of the lattice parameters and unit cell volumes with pressure are listed in Table 2. Fig. 2 plots the variations in lattice parameters versus applied quasi-hydrostatic pressure, P. Second-order polynomial least-square fits resulted in the coefficients listed in Table 3. In both cases, the contraction with pressure along the c-direction is greater than along the a-direction. The main difference between the two compounds, however, is clearly in the relative changes in the a-direction; the relative changes in the c-direction are almost indistinguishable. Along the a-direction Ti$_2$AlC is less compressible than Ti$_2$AlN, Consequently, the anisotropy is greater for the former than for the latter. This conclusion is in accord with thermal expansion anisotropy results. For Ti$_2$AlC, the thermal expansion along the a-and c-directions are 7.1 ± 0.3 and 10.5 ± 0.5 × 10$^{-6}$ K$^{-1}$, respectively. At 8.6 ± 0.2 and 7.0 ± 0.5 × 10$^{-6}$ K$^{-1}$, the respective values for Ti$_2$AlN are closer to each other [14].

Another consequence is that the bulk modulus of Ti$_2$AlN is slightly lower than that of Ti$_2$AlC (Fig. 3).
Table 1
Ambient pressure lattice parameters and unit cell volumes of Ti2AlX (X = C, N) compounds measured herein

<table>
<thead>
<tr>
<th>Ti2AlX</th>
<th>Ti2AlC</th>
<th>Ti2AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a (\text{Å}))</td>
<td>(3.065 \pm 0.004)</td>
<td>(2.986 \pm 0.003)</td>
</tr>
<tr>
<td>(c (\text{Å}))</td>
<td>(13.71 \pm 0.03)</td>
<td>(13.60 \pm 0.02)</td>
</tr>
<tr>
<td>(V_o (\text{Å}^3))</td>
<td>(111.6 \pm 0.6)</td>
<td>(105.0 \pm 0.5)</td>
</tr>
</tbody>
</table>

Previous results are also listed. Note the results of Ref. 27 are ab initio calculations.

Table 2
Relative unit-cell parameters and volume changes of Ti2AlN and Ti2AlC at various pressures

<table>
<thead>
<tr>
<th>(P (\text{GPa}))</th>
<th>(V/V_o)</th>
<th>(a/a_o)</th>
<th>(c/c_o)</th>
<th>(P (\text{GPa}))</th>
<th>(V/V_o)</th>
<th>(a/a_o)</th>
<th>(c/c_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.17</td>
<td>0.9740</td>
<td>0.9934</td>
<td>0.9870</td>
<td>8.46</td>
<td>0.9653</td>
<td>0.9892</td>
<td>0.9865</td>
</tr>
<tr>
<td>16.50</td>
<td>0.9187</td>
<td>0.9732</td>
<td>0.9699</td>
<td>10.27</td>
<td>0.9539</td>
<td>0.9862</td>
<td>0.9808</td>
</tr>
<tr>
<td>18.48</td>
<td>0.9072</td>
<td>0.9699</td>
<td>0.9643</td>
<td>12.14</td>
<td>0.9448</td>
<td>0.9859</td>
<td>0.9720</td>
</tr>
<tr>
<td>22.41</td>
<td>0.8992</td>
<td>0.9666</td>
<td>0.9624</td>
<td>21.26</td>
<td>0.9140</td>
<td>0.9778</td>
<td>0.9559</td>
</tr>
<tr>
<td>27.12</td>
<td>0.8790</td>
<td>0.9606</td>
<td>0.9525</td>
<td>28.24</td>
<td>0.8903</td>
<td>0.9685</td>
<td>0.9492</td>
</tr>
<tr>
<td>33.86</td>
<td>0.8566</td>
<td>0.9523</td>
<td>0.9445</td>
<td>37.63</td>
<td>0.8623</td>
<td>0.9582</td>
<td>0.9392</td>
</tr>
<tr>
<td>36.94</td>
<td>0.8476</td>
<td>0.9474</td>
<td>0.9444</td>
<td>49.6</td>
<td>0.8330</td>
<td>0.9467</td>
<td>0.9294</td>
</tr>
<tr>
<td>43.84</td>
<td>0.8263</td>
<td>0.9431</td>
<td>0.9298</td>
<td>53.95</td>
<td>0.8234</td>
<td>0.9417</td>
<td>0.9286</td>
</tr>
<tr>
<td>45.22</td>
<td>0.8263</td>
<td>0.9417</td>
<td>0.9317</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Pressure dependencies of \(a/a_o\) (left axis) and \(c/c_o\) (right axis) for Ti2AlX (X = C, N). Note that the lines are least-square fits of the data points.

Fitting the same results to the Birch-Murnaghan equation [28]

\[
P = \frac{3}{2} K_o [(V/V_o)^{-7/3} - (V/V_o)^{-5/3}] \\
	\times \left[1 + \frac{3}{4}(K'_o - 4)[(V/V_o)^{-2/3} - 1]\right],
\]

where \(K_o\) is the bulk modulus and \(K'_o\) its pressure derivative, yields a \(K_o\) of 169 \pm 3 GPa for Ti2AlN and 186 \pm 2 GPa for Ti2AlC (Table 3).

At this point, it is instructive to place the values of \(K_o\) measured here in perspective. As the compressibilities along both directions in Ti4AlN3 are lower than Ti2AlN, it follows that \(K_o\) of Ti2AlN is lower than the 216 GPa of Ti4AlN3 (Fig. 3). Similar to Ti4AlN3, however, the compressibility along the \(a\)- is less than along the \(c\)-direction. The main reason Ti4AlN3 is stiffer is that it is comprised of a larger fraction of strong M–X bonds compared to the M–A bonds that tend to be relatively weaker. Consistent with this notion is the fact that the bulk modulus of Ti4AlN3 (216 GPa) is lower than the corresponding value for TiN (300 GPa) [29]. The agreement between our results and those deduced from recent ab initio calculations is excellent: within 4% for Ti2AlN [30] and within 10% for Ti2AlC [31].

Based on the fact that the compressibilities along the \(c\)-direction for both Ti2AlC and Ti2AlN are quite similar (Fig. 2), it is reasonable to assume that the compressibility along the \(c\)-direction is dominated by the Ti–Al bonds that are identical in both compounds. Along the \(a\)-axis, on the other hand, the main difference between the two compounds must thus be traced to the M–X bonds and/or vacancies. Given that the \(a\)-lattice parameters of Ti2AlN are shorter than those in Ti2AlC (Table 1) it is unlikely that the Ti–N bonds are weaker. We thus conclude that vacancies on the N-sublattice is responsible for the lower value of \(K_o\) for Ti2AlN. A more detailed exposition of this notion will be published elsewhere [32].

4. Summary and conclusions

Using a synchrotron radiation source and a DAC, we measured the pressure dependencies of the lattice parameters of polycrystalline Ti2AlN and Ti2AlC samples up to pressures \(\approx 50\) GPa; no phase transformations were observed. Like what was observed in most of the MAX phases, the compressibility of Ti2AlN and Ti2AlC along the \(c\)-axis is larger than that along the \(a\)-axis. The bulk modulus for Ti2AlC is 186 \pm 2 GPa, which is 10% higher than that for Ti2AlN, (169 \pm 3 GPa).

Acknowledgments

This work was financially supported by a grant from the National Science Foundation (DMR 0231291 to FIU) and (DMR 0503711 to Drexel U.). HPCAT is collaboration among the Carnegie Institution, Lawrence Livermore National Laboratory, the University of Hawaii, the
Table 3 Fitting of relative lattice parameter and volume changes with pressure, P

<table>
<thead>
<tr>
<th>Ti$_2$AlX</th>
<th>Ti$_2$AlC</th>
<th>Ti$_2$AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{A}{a_o} = 1 + \beta P/P_o + \gamma (P/P_o)^2$</td>
<td>$\beta = -0.0011$</td>
<td>$\gamma = 7 \times 10^{-7}$</td>
</tr>
<tr>
<td>$\frac{C}{c_o} = 1 + \beta P/P_o + \gamma (P/P_o)^2$</td>
<td>$\beta = -0.0024$</td>
<td>$\gamma = 2 \times 10^{-5}$</td>
</tr>
<tr>
<td>$\frac{V}{V_o} = 1 + \beta P/P_o + \gamma (P/P_o)^2$</td>
<td>$\beta = -0.0045$</td>
<td>$\gamma = 2 \times 10^{-5}$</td>
</tr>
<tr>
<td>K_o (GPa)</td>
<td>186 \pm 2</td>
<td></td>
</tr>
<tr>
<td>K_o' (GPa) from ab initio</td>
<td>4.0 \pm 0.1</td>
<td></td>
</tr>
<tr>
<td>K_o (GPa) from Ref. [31], 164 [24]</td>
<td>176 \pm 2</td>
<td></td>
</tr>
</tbody>
</table>

P_o defines the units used and is equal to 1 GPa. The correlation coefficients values were all greater than 0.99. Also included are experimental bulk moduli and ab initio total energy calculation results.

Fig. 3. Relative unit-cell volumes of Ti$_2$AlX (X = C, N) as a function of pressure. Also shown are the results for Ti$_4$AlN$_3$ taken from Ref. [18]. Note that the lines are least-square fits of the data points.

University of Nevada–Las Vegas, and the Carnegie/DOE Alliance Center (CDAC). Part of the work was conducted at Cornell High Energy Synchrotron Source (CHESS), supported by NSF grant and NIH/NIGMS under Award no. DMR 0225180. Special thanks to Dr. Zha for all his support at CHESS.

References